
MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 1

MSN Mobile My Services 6.0
Software Porting Kit

April 2003

This document describes the overall product delivered by Microsoft MSN Mobile Services

and marketed as MSN Mobile My Services 6.0 Software Porting Kit. The product described in this

document is scheduled for delivery to the market in Q2 of 2003.

Summary

This document describes the overall product delivered by Microsoft MSN Mobile Services

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 7

Introduction
This introductory section is intended to give you a preliminary overview of MSN Mobile My

Services 6.0 Software Porting Kit (SPK). This section includes a brief explanation of what MSN

Mobile My Services is (from a developer’s perspective), why you would be interested in using it,
and how to get started with your own custom MSN Mobile My Services client implementation.

You will learn about the high-level MSN Mobile architecture and the primary options available for

connecting client devices to the MSN Mobile service. You will also learn about the services

available for implementation on client devices by using the SPK, including instant messaging, e-

mail, and alerts. Finally, you will learn about this documentation, including the technologies you

will need to know to make use of the SPK and where to go to find additional resources.

MSN Mobile My Services Overview
MSN Mobile My Services 6.0 SPK enables telecommunications applications developers to create

applications for mobile client devices with MSN Mobile content. MSN Mobile comprises both a

service that resides at a Microsoft data center and client software that resides on the handset and

maintains the user’s state with the server. The service is called MSN Mobile My Services and the

client software applications are called Pocket MSN clients. MSN Mobile My Services provides

access to MSP, a standards-based protocol for communications between Pocket MSN client

devices and the Microsoft data center. This protocol gives the calling client application schemas

for sending and receiving information from MSN Mobile content properties in XML format.

Client application developers can give mobile users real-time or near real-time access to their

information and communications tools through a variety of mobile devices. By using a single

application interface on a mobile phone or personal digital assistant, users can view, edit and

create information in their MSN Mobile accounts. They can access and interact with the same data,

whether they are on a PC or a mobile phone, and they can communicate with their contacts

regardless of whether the other party is using a PC or a mobile phone. For example, users can:

▪ Update an address book entry.

▪ Send an instant message to a buddy.

▪ Receive an e-mail and forward it to a friend.

▪ Scan news headlines and other content alerts.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 8

Figure 1. MSN Mobile My Services

About Mobile Services Protocol (MSP)
Mobile Services Protocol (MSP) is a Microsoft proprietary protocol used to support

communication between Pocket MSN client devices and MSN Mobile services such as

Hotmail. The MSP protocol is based upon commonly used and extensible Internet standards

such as Extensible Markup Language (XML). The protocol defines how messages are sent

and received between the client and the service. All MSP messages are either requests or

responses. Requests typically originate from the client; however it is possible for them to

originate from the server. Responses typically originate from the server; however, again it

is possible for it to work the other way.

The MSN Mobile service input and output is expressed as XML document fragments. Each
of these document fragments must conform to an XML schema document, which is

available from the interaction with the MSN Mobile service. However, MSP messages are

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 9

not sent in actual XML files, but in MSP packets. An MSP packet comprises a binding

header followed by one or more compact binary representations of the XML. A compressed

data format is used to minimize bandwidth usage on mobile networks. The binary format is

based on WBXML (WAP Binary XML Content Format), but with some Microsoft

proprietary modifications intended to provide even more efficient network utilization than

standard WBXML.

The MSP protocol is designed to be essentially indifferent to the underlying transport

method used for communicating the MSP messages. However, initially the protocol

supports three transport methods:

▪ UDP (User Datagram Protocol). UDP is supported on port 50000 for both mobile-

originated (MO) and mobile-terminated (MT) messages.

▪ TCP/IP (Transmission Control Protocol/Internet Protocol). TCP/IP is supported

for both MO and MT messages.

▪ SMS (Short Message Service). SMS is supported for MT messages only.

Note: It is possible for MSP request messages to be sent over one transport method

(for example, UDP) while the resultant response message is received over a

different method (for example, SMS). When responses are received over a

different transport method than the requests, they are said to travel over a

“back channel”.

For more information about the MSP protocol including supported transport methods and

data encryption, see “Section 1. Working with the MSP Core Protocol” on page 16.

Pocket MSN Clients and MSP
Pocket MSN client devices may be developed using a variety of technologies for mobile

platforms and developers may communicate with MSP regardless of the platform they’re
targeting. Clients must support one or more of the transport methods (UDP, TCP/IP, etc.)

used for sending MSP messages.

Additionally, in order to interact with MSN Mobile services, a typical Pocket MSN client

should be able to format XML messages and deliver that message to the MSN Mobile data

center using SOAP (Simple Object Access Protocol). SOAP can be used to specify exactly

how the message headers and XML files are to be encoded and deliver the binary XML

payload of an MSP message. While SOAP is often used for sending MSP messages, MSP

does not derive from SOAP and is really indifferent to the information exchange protocol.

Clients must authenticate with the MSN Mobile service to establish a session. However,

clients do not need to remain connected to maintain the session. Rather, sessions expire

after a given length of time. The client must re-authenticate with the service and establish a

new session after the session expires.

Client Device Requirements
Pocket MSN clients must be able to manipulate XML document fragments and perform

some simple, public-domain cryptographic operations on portions of the message. While

typical client devices should be able to work with XML, SOAP, and compressed

representations of the XML, the ability to parse XML and use SOAP to deliver messages

are not absolute requirements. What is essential is that the client can compress and de-
compress the MSP binary data streams and use the XML document fragment payloads they

contain. While clients must be able to work with the MSP binary data streams, it is not

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 10

necessary to write a WBXML-based binary data interpreter from scratch. This SPK

contains code samples that you can use to build a WBXML-based interpreter.

Additional minimum requirements for client devices include:

▪ 3-line black and white screen display.

▪ Client-side APIs for sending and receiving packet data (via SMS, 1XRTT, GPRS, or

3G). One-way SMS can be used if UDP or TCP/IP support is available.

Pocket MSN Client Features
The following features are available for implementation on Pocket MSN 6.0 client devices:

▪ Synchronized Contacts List. Users can view the same information in their contacts

list on the PC or on the mobile phone. The MSN Mobile contacts list is synchronized

with the Messenger (either MSN or Windows) contacts list. It can provide a variety of

information to the end-users including the display name (friendly name), e-mail/IM

addresses, up to three phone numbers, plus the presence (online, mobile, offline) and

status (on the phone, busy, and so forth) for each contact. When one of the user’s
contacts updates their personal information (such as changing a phone number), then

the new information can be updated on the user’s phone automatically.

▪ Instant Messaging. Users can send and receive instant messages with individuals or

groups by using a simple interface that supports basic text messaging and graphical

emoticons. They can maintain several instant messaging conversations simultaneously

and switch between them. They can hear audible alerts or view pop-up alerts when a

new instant message arrives. They can interact with buddies who are online on a PC or

on another mobile phone that provides access to MSN Messenger.

▪ E-mail. Users can access their MSN Hotmail Inbox or any other Hotmail folder

including user-defined folders. They can compose, reply, forward, delete, and move

messages just like they can with Hotmail on the PC. They can also receive

notifications on their phone to alert them when they receive new e-mail messages.

▪ Alerts. Users can access MSN Alerts that provide specific content such as news,

weather, sports scores, stock quotes, traffic updates, and so forth. Other alerts can be

sent when new instant messages or e-mails arrive for users. Users can manage their

alerts, including subscribing or unsubscribing to specific alert services, by logging in

to a special Web page on the MSN Mobile Web site.

MSN Mobile Network Utilization
The MSN Mobile service is designed with the intention that only absolutely essential data

is sent to the mobile phone to maximize network efficiency. For the end user, the MSN

Mobile client offers an “always on” service—from sign-in to sign-out, the user is

considered “online.” Despite providing an “always on” service from the user’s perspective,
the MSN Mobile service takes steps to provide efficiency of bandwidth utilization for the

telecommunications carrier.

These steps fall into three categories:

▪ Connection Management. The service logs users in to specific MSN services such as

Hotmail and Messenger so the client only needs to actually connect to the service to

transmit data. Clients synchronize with the server upon logging in and are

disconnected after remaining idle for a while. To manage synchronization, client

application developers must track and manage the “change numbers” provided with
communications between the client and service. When back channel carrier

implementations are used, the service has the ability to open a data connection via

SMS and “wake up” the phone when an event happens that is of sufficient priority.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 11

▪ Data Compression. MSN Mobile increases network efficiency by compressing

transmitted data. The compression method used is WAP Binary XML (WBXML), a

binary form of XML especially well suited for applications on wireless networks.

▪ User Behavior Management. The service carefully tracks the data that is stored on

the phone and only sends down the content that has changed since the last time the

user logged in to the service. So if a user logs in to Messenger or Hotmail on the

phone, the client can limit downloaded information to just the contact or e-mail that

changed since the previous login (if any). Additionally, detailed information about e-

mails may be only downloaded only upon a specific request of the user.

For more information about the steps taken by MSN Mobile to achieve efficient network

utilization, see the MSN Mobile Client Product Description document.

Implementing MSP on Mobile Networks
There are four options available to telecommunications network operators at this time for

implementing MSP on their mobile network. These options are:

▪ Option 1: UDP with SMS back channel

▪ Option 2: UDP without a back channel

▪ Option 3: TCP/IP with SMS back channel

▪ Option 4: TCP/IP without a back channel

Figure 2. MSP Implementation Options

Note: The first of these options, UDP with an SMS back channel, is the implementation

preferred by Microsoft. It provides the best user experience including a

connectionless data interchange channel between service and client, fast

connection times and low latency. When the client has an IP address that is

accessible to the service, the user may have an “always connected” user
experience without the network overhead associated with keeping a socket open.

Option 1: UDP with SMS back channel

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 12

Figure 3. UDP with SMS back channel

MSP over UDP works with either packet switched IP connections or circuit switched IP

connections. Examples of supported packet switched connections include General Packet

Radio Service (GPRS), single carrier (1x) radio transmission technology (1xRTT), and

wireless fidelity (Wi-Fi). Supported circuit switched IP connections include Code-Division

Multiple Access (CDMA or IS-95) networks.

In this implementation, the SMS back channel is used to push packets to the Pocket MSN

client device when the device does not have an open connection. As a result, users will

receive updates about their MSN Mobile services regardless of whether or not their device

is not connected to the network. Compared to implementation options without a back

channel, users will therefore receive data in a more timely fashion. Also, users may

experience shorter wait times when connecting to the service compared to the

implementation of UDP without a back channel, because there may be fewer updates to

download each time they connect to the service.

An MSP packet contains a time-to-disconnect (TTD) that can be used by the UDP interface

as a “clue” from the client that suggests whether or not the current IP address is valid. Any
MSP responses or new MSP requests are sent to the client only if the TTD has not passed.

The TTD is renewed when a new MSP packet is received from the client. If the TTD has

passed, then the current IP address for the device is invalidated and any packets intended

for the client that are received by the MSN Mobile service will not be sent. Instead, packets

intended for the client will either be queued for sending when the client reestablishes an IP

connection or they will be sent to the client over SMS.

The service uses SMS binary and SMS segmentation and reassembly when they are

supported by the telecommunications service provider. If SMS binary is not available, then

packets are base64 encoded. If the packet exceeds the telecom operator’s specified
maximum SMS message size, then the packet is queued for sending when the client

reestablishes an IP connection. When this occurs, an MSP ping request is sent to the client

instead of the queued MSP packet. The ping request includes information about the queued

MSP packet that the client may use to determine whether or not to reestablish an IP

connection.

Note: Currently the MSN Mobile service does not have a way to determine whether

or not the client is unreachable using UDP, so the service treats the client’s IP
address as valid for the full amount of the TTD period.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 13

Option 2: UDP without a back channel
MSP over UDP without an SMS back channel is also supported. As in the previous option,

both packet switched IP connections and circuit switched IP connections are supported by

the MSN Mobile service.

The only difference between this option and having a back channel is that the service does

not send packets if the Pocket MSN client device does not have an open connection to the

service. As a result, users will not receive updates about their MSN Mobile services

whenever their device is not connected to the network. Instead, the service stores the

packets intended for the user’s device until the next time the user logs in to the service.
Additionally, users could experience longer wait times when connecting to the service

compared to the implementation of UDP with a back channel, because there may be a

greater quantity of updates to download each time they connect to the service.

Figure 2. UDP without back channel

Option 3: TCP/IP with SMS back channel

Figure 4. TCP/IP with SMS back channel

MSP over TCP/IP works with either packet switched (for example, GPRS, 1xRTT and Wi-

Fi) or circuit switched (for example, CDMA/IS-95) IP connections. The SMS back channel

is used to push packets between Pocket MSN client polls to the TCP/IP interface.

The Pocket MSN client polls the TCP/IP interface to which the service responds by sending

all the pending MSP packets. However, if the poll contains any MSP requests, then the

TCP/IP interface waits for the response before sending all the pending MSP packets.

Between polls, the service either queues incoming packets intended for the client or sends
the packets to the client over the SMS back channel.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 14

The service uses SMS binary and SMS segmentation and reassembly when it is supported.

If SMS binary is not available, then the packet is base64 encoded. If the packet exceeds the

telecom operator’s specified maximum SMS message size, then the packet is queued for

sending when the client reestablishes an IP connection. At that time, the service sends an

MSP ping request to the client in place of the queued MSP packet. The ping request

includes information about the queued MSP packet which the client uses to determine

whether or not to poll the TCP/IP interface.

Option 4: TCP/IP without a back channel
It is also possible to implement the MSP service over TCP/IP without a back channel. This

approach works in the same fashion as with a back channel (see “Option 3: TCP/IP with

SMS back channel”, above), except that the service only sends packets to the Pocket MSN
client when it is polled via the TCP/IP interface.

Figure 4. HTTP without back channel

About the Documentation
This section provides information on how the Mobile My Services SPK is organized and about

additional documentation resources available.

How This Guide is Organized
This guide is organized in a way that presents information on MSP and its Web services as

individual sections. Additional information, including a glossary and troubleshooting

assistance, can be found in the appendices.

This guide contains the following sections:

▪ Section 1. Working with the MSP Core Protocol

▪ Section 2. Authenticating Users

▪ Section 3. Working with Contacts

▪ Section 4. Working with E-mail

▪ Section 5. Working with Messaging

▪ Section 6. Working with Profiles

▪ Section 7. Working with Alerts

Additionally, there are appendices that provide a reference to the MSP compression tables

and notes about the sample applications provided with the porting kit.

Who Should Use This Guide
This guide will be useful primarily to persons responsible for planning, developing and

implementing Pocket MSN client applications on mobile devices.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 15

Developers using this guide must be familiar with the programming languages and

technologies used by their target application platform, plus XML and WBXML

technologies.

Additional Documentation Resources
In addition to the Mobile My Services SPK documentation, there are additional

documentation resources available to assist with creating Pocket MSN client applications.

For general information about Microsoft development processes, standards and technology,

see the MSDN home page at http://msdn.microsoft.com/default.asp.

The following Microsoft documentation may be of particular benefit to you:

▪ MSN Mobile Client 6.0 Product Description. This resource provides a sample

reference client implementation with user interface screen samples and process flows.

▪ Mobile Services Protocol Version 2.0. Product development specifications with

details on the core services protocol.

▪ Mobile Services Protocol Version 2.0 Extensions for Instant Messaging. Product

development specifications with details on IM protocol extensions.

▪ Mobile Services Protocol Version 2.0 Extensions for E-mail. Product development

specifications with details on e-mail protocol extensions.

Additional Resources
Additionally, you can find more information about some of the technologies related to

MSP:

▪ Wireless Application Protocol Wireless Session Protocol Specification

(http://www1.wapforum.org/tech/documents/WAP-203-WSP-20000504-a.pdf).

Defines an industry-wide specification for developing applications that operate over

wireless communication networks. This document provides background information

related to WSP that some developers may find useful for understanding core MSP

technologies. However, understanding WSP is not a requirement.

▪ Binary XML Content Format Specification

(http://www1.wapforum.org/tech/documents/WAP-192-WBXML-20010725-a.pdf).

Defines a compact binary representation of XML. The binary designed to allow more

effective use of XML data on narrowband communication channels. WBXML, with

some proprietary modifications, is the basis for the compression used in Mobile My

Services.

▪ Simple Object Access Protocol (SOAP) 1.1 Specification

(http://www.w3.org/TR/SOAP/.) Defines the SOAP protocol for distributed

information exchange. May be useful for developers wanting to use SOAP as a

container for working with MSP messages.

▪ Session Initiation Protocol (SIP) (http://www.ietf.org/html.charters/sip-charter.html)

Defines the SIP proposed standard RFC 2543 for initiating interactive communication

sessions between users.

▪ XML Path Language (XPath) Version 1.0 (http://www.w3.org/TR/xpath). XPath is

a language for addressing parts of an XML document. It is not fully supported in MSP;

however, some XPath notations may be used for navigating XML documents as

described in this SPK document.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 16

 Section 1. Working with the MSP Core Protocol
This section describes the underpinnings of the MSP core protocol: its protocol data unit, bindings,

and transport methods. You will also see samples of content contained in the SOAP messages,

including requests, responses, headers and the message body. The core methods of the MSP

protocol are also described, including inserts, replaces, updates, deletes, notifications and pings.

The remainder of the section describes the workings of user sessions and data synchronization. In

particular, you will learn about working with change numbers.

This information will be useful in providing a general understanding of the core MSP methods.

Client authentication processes and MSDL methods specific to individual MSN Mobile services,

such as e-mail or messaging, are described in later sections.

Understanding the Protocol Data Unit and Bindings
This diagram shows the PDU and data binding. The elements of the diagram are discussed in

this section.

Figure 5. PDU and Data Binding

Element Name Type Source

Binding Version Uint8 The IP binding version.

SessionID The SessionID parameter.

TTD The time to disconnect. UDP transport only.

License Block The license.

BindingEnd Uint8 The binding end tag (0x00).

PDU Version Uint8 The MSP version (that is, 2.0).

PDU Content 1 … Content n n octets The SOAP message content.

Binding Version Element
This element contains the data binding version number, both major and minor versions.

This implementation of MSN Mobile is IP binding version 2.0. The major version number

is stored in the high-order 4 bits. The minor version number is stored in the low-order 4

bits.

Session ID Element
This element contains the Session ID tag. This tag specifies the client or server session

number. The server session number is globally unique. Each client session number is

unique to the specific client.

Each element of this tag is described in the following diagram and table.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 17

Figure 6. Session ID Element

Name Type Source

SessionIDTag Uint8 The session ID tag (0x01).

SessionIDLen Uint8 The session ID length.

SessionID SessionIDLen bytes The client or server session ID.

TTD Element
This element contains the expected time to disconnect (TTD) for the wireless network

connection. It is used for the UDP transport method only. It is an optional element.

Each element of this tag is described in the following diagram and table.

Figure 7. TTD Element

Name Type Source

TTDTag Uint8 The TTD tag (0x02).

TTD Uint16 The time to disconnect (seconds). This

information is used as a “clue” to indicate
whether or not a current connection with the

client is available.

License Block Element
This element contains the license that ensures the integrity of the message. Both the client

and the server should check the license block for each of the following: acceptable packet

sequence number and valid keyed hash. The license block is an optional element.

Each element of this tag is described in the following diagram and table.

Figure 8. License Block Element

Name Type Source

LicenseBlockTag Uint8 The license block tag (0x03).

SequenceNo Uint32 The session ID length.

KeyedHash 20 bytes The client or server session ID.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 18

Acceptable Packet Sequence Numbers

Acceptable packet sequence numbers are greater than the current packet (- 30). If

numbers are significantly less than current (- 30) or equal to the current, they are

unacceptable. Clients should silently ignore packets with an unacceptable sequence

number.

Note that the sequence number check must also account for possibility of packets that

may be missing or received out of order.

Keys

Both the client and server derive their keys from the session key.

Kc = Hmac-SHA1(K, ”clientLicenseKey”)

Ks = Hmac-SHA1(K, ”serverLicenseKey”)

Where:

K is the session key.

Kc is the client license key.

Ks is the server license key.

Note: In this example, the hash strings are case sensitive and the length of the

license key is 20 bytes.

Keyed Hash
A valid keyed hash is a function of the packet sequence number and PDU using the

client or server keys. Clients should silently ignore packets with an invalid keyed hash.

KHc = Hmac-SHA1(Kc, f(SNc, PDU))

KHs = Hmac-SHA1(Ks, f(SNs, PDU))

Where:

• KHc is the client keyed hash.

• SNc is the client sequence number.

• KHs is the server keyed hash.

• SNs is the server sequence number.

PDU Version
This element contains the MSP version number, both major and minor versions. This

implementation of MSN Mobile is MSP version 2.0. The major version number is stored in

the high-order 4 bits. The minor version number is stored in the low-order 4 bits.

PDU Content
The length of the PDU content field is determined from the PDU size as provided by the

underlying transport mechanism. A PDU may comprise multiple content blocks (from 1 to

n). Each content block is delineated by the Envelope element in the SOAP message.

The maximum compressed content length of a single PDU is 16 Kilobytes. For more

information, see “MSP Message Content Examples” on page 20.

Note: This element is always transmitted in a compressed state. For more, see

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 19

“Understanding Data Compression” on page 41.

About Transport Methods

The following table summarizes key features of two transport methods that may be used with

MSP.

 PDU Size Port Address

UDP The PDU size is determined from

the IP Total Length field.

The initial port number is 50000.

SMS The PDU size and Content field

size is determined from the TP-

User-Data-Length field(s).

There is currently no application port

address for MSP.

TCP/IP The initial port number is 50000.

User Datagram Protocol (UDP)
MSP supports the UDP as an alternative to Transmission Control Protocol (TCP). UDP

offers a limited amount of service when messages are exchanged between computers on an

IP network. It provides port numbers to help distinguish different user requests.

When using the UDP transport method, use the Domain Name Service (DNS) to resolve the

domain name for mobile services. Note that the domain name for MSN Mobile Services is

services.myservices.mobile.msn.com.

Short Message Service (SMS)
MSP supports the SMS (Short Message Service) for sending messages of a limited number

of characters to mobile phones that use Global System for Mobile (GSM) communication.

Note: A single MSP message may span multiple SMS packets.

Binary SMS Messages

Some mobile devices and network infrastructures do not support binary SMS messages.

If binary SMS messages are not supported, then the MSP message should be base 64

encoded.

Run-time Environment Header

Some run-time environments (RTE) support the conditional dispatching of SMS

messages to applications. You can use the RTE to route SMS messages in these

environments such as Pocket MSN and QUALCOMM's Binary Runtime Environment

for Wireless™ (BREW™) platform. MSN Mobile clients may define the run-time

environment header by specifying a device capability.

The Pocket MSN RTE header is:

//MSN:

BREW allows SMS messages to be routed based on their run-time environment header

(RTE) header. The BREW RTE is:

//BREW:<Class ID>:

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 20

Note: The BREW RTE is limited to text SMS messages. Class ID is an 8 char

hex value (for example, 010ECD01).

MSP Message Content Examples
This section shows MSPmessages containing sample content. Examples are included for

requests and responses, message headers and the message body.

<s:Envelope xmlns:s=”http://schema.xmlsoap.org/soap/envelope”

 xmlns:srp=”http://schemas.xmlsoap.org/soap/rp/”

 xmlns:ss=”http://schemas.xmlsoap.org/soap/security/”

 xmlns:ms=”http://schemas.microsoft.com/ms/2001/1/core”>

 <s:Header>

 …

 </s:Header>

 <s:Body>

 <ms:method>

 …

 </ms:method>

 </s:Body>

<s:/Envelope>

Request Messages
This is a sample request message.

<s:Envelope>

 <s:Header>

 <srp:path>

 <srp:to>”http://mycontacts.mobile.msn.com/quentin@msn.com”

 </srp:to>

 <srp:id>202</srp:id>

 </srp:path>

 <ms:request service=”myContacts” method=”insert”

document=”content”

 genResponse=”always”/>

 </s:Header>

 <s:Body>

 <ms:insertRequest>

 …

 </ms:insertRequest>

 </s:Body>

</s:Envelope>

 <s:Header>

 <srp:path>

 </srp:path>

 </s:Header>

</s:Envelope>

Response Messages
This is a sample response.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 21

<s:Envelope>

 <s:Header>

 <srp:path>

 <srp:from>”http://mycontacts.mobile.msn.com”</srp:from>

 <srp:id>23</srp:id>

 <srp:relatesTo>202</srp:relatesTo>

 </srp:path>

 <m:response service=”myContacts” document=”content”/>

 </s:Header>

 <s:Body>

 <ms:insertResponse>

 …

 </ms:insertResponse>

 </s:Body>

</s:Envelope>

Message Headers

Path

This is a sample message header.

<srp:path>

 <srp:to>0..1</srp:to>

 <srp:from>0..1</srp:from>

 <srp:id>1..1</srp:id>

 <srp:relatesTo>0..1<srp:relatesTo>

</srp:path>

The meaning of the attributes and elements shown in the preceding sample document

fragment are listed in the following table.

Name Required Description

srp:to Required The to element contains the address of the destination of the

message. It typically appears only in MT messages, rarely in MO

messages. The absolute URI defaults to user’s service entry if
the name is not included in the URI. For example, if the user

name is “someone@msn.com” then to=
“http://mycontacts.mobile.msn.com” represents to=
“http://mycontacts.mobile.msn.com/someone@msn.com”.

srp:from Optional The from element contains the address of the sender of a

message. It is in the format of an absolute URI.

srp:id Required The id element contains the ID number for the message. It is an

unsigned variable length integer. Note that the ID is generated

by the sender. It is limited to 16383 (14 bits).

srp:relatesTo Required The relatesTo element relates the message to a specific

previous request. It is an unsigned variable length integer.

Responses must contain this element.

Request Messages

This is a sample request message.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 22

<ms:request service=”…” method=”…” document=”…” changeNumber=”…”

 genResponse=”…”>

 <ms:documentRef service=”…” document=”…”

changeNumber=”…”/>0..unbounded

</ms:request>

The meaning of the attributes and elements shown in the preceding sample document

fragment are listed in the following table.

Name Required Description

ms:service Required The service attribute specifies the name of the service

to access.

Valid values are:

• mobileMyServices

• alerts

• passport

• myContacts

• myProfile

• messaging

• myInbox

• deviceCapabilities

method Optional The method attribute specifies the method to access

for the service.

The core methods are:

• insert

• query

• delete

• replace

• update

• authenticate

• notification

• ping

document Optional The document attribute specifies the document class

to access for the service.

Valid document classes are:

• content

• folder number (myInbox)

changeNumber Optional The changeNumber attribute contains the change

number that the client has cached for the object. It is

an unsigned variable length integer. For more

information about change numbers, see “Change

Numbers” on page 38.

genResponse The genResponse attribute controls the generation of

a response to the request

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 23

The valid values are:

• always – always generate a response.

• never – never generate a response.

• faultOnly – only generate a response when

the request results in a fault message.

• faultOrFailure – only generate a response

when the request results in a fault or failure

response messages.

ms:documentRef Optional The documentRef element contains the current

change number the client has cached for a related

document. It must be included wherever a contact ID

is referred to by another service.

Response Messages

This is a sample response.

<ms:response service=”…” document=”…” previousChangeNumber=”…”

changeNumber=”…”/>

The meaning of the attributes and elements shown in the preceding sample response are

listed in the following table.

Name Required Description

service Required The service attribute contains the service to access.

The valid values are:

• mobileMyServices

• alerts

• passport

• myContacts

• myProfile

• messaging

• myInbox

• deviceCapabilities

document Optional The document attribute specifies the document class

to access for the service.

The valid document classes are:

• content

• folder number (myInbox)

previousChangeNumber Optional The previousChangeNumber attribute contains the

previous change number the server has stored for the

document. This attribute enables chunks to be

atomic. It is an unsigned variable length integer. For

more information about change numbers, see

“Change Numbers” on page 38.

changeNumber Optional The changeNumber attribute contains the current

change number the server has for the document. It is

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 24

an unsigned variable length integer.

Message Body
The message body contains Mobile Services Data-manipulation Language (MSDL) as

described in the following section, “Working with the MSDL Methods”. A sample message

is shown below.

<s:Body>

 <ms:method>

 …

 </ms:method>

</s:Body>

Working with the MSDL Methods
All interactions with the MSN Mobile services are based on simple XML commands. MSDL is

the name for the XML elements used while interacting with MSN Mobile services. MSDL is a

data manipulation language based on HSDL, the Microsoft .NET My Services data

manipulation language that drives interaction with Web services. Like HSDL, MSDL allows

for queries, updates, inserts, and other actions as well as allowing their XML payloads to

interact with MSN Mobile services.

MSDL is the command interface for the MSN Mobile services. Various core methods are used

in the course of interaction with the various services, along with the specific methods designed

for common tasks in the particular services (e-mail, instant messaging, and so forth). These

methods are used for five common tasks: insert, query, replace, delete and ping. Specific

command syntax including supported parameters and common error scenarios for methods

related to these tasks are described in this section.

Note: The attribute and element values of MSDL methods are not case sensitive.

Understanding the Data Structure and XPath
MSDL methods are primarily focused on transporting data in and out of XML documents,

but their design and syntax also reflect a specific data structure. MSDL has established two

man types of nodes in XML documents. The first type is referred to as blue and represents

the primary data elements of the service. Every immediate child node of any service root

element (such as <myProfiles> or <myContacts>) is a blue, or primary, element.

In MSDL, XPath is used to target a specific element or portion of a service document to a

specific node. In other words, consider the following document fragment:

<myContacts>

 <contact id=”some_id”>

Both myContacts and the contact element are blue types, because they are primary elements

in the definition of the MSN Mobile myContacts schema. The id attribute is defined as a red

element within the service. Such an element can be used in an XPath statement as a

predicate. For example:

/myContacts/contact[id=’some_id’]

The above XPath would select a specific element of the myContacts schema that contained
a child id attribute with the value of some_id.You can use XPath predicates against

secondary (red) elements and attributes to further tailor your queries.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 25

Inserting Elements
The insert request MSDL method is used to insert a new element into the user’s service
document.

ms:insertRequest
The ms:insertRequest method inserts a valid XML fragment into the selected node of a

document. This is a sample request message.

<ms:insertRequest select=”…”

 xmlns:ms=”http://schemas.microsoft.com/ms/2001/1/core”>

 {objects}

</ms:insertRequest>

The meaning of the attributes and elements shown in the preceding sample document

fragment are listed in the following table.

Attribute Description

select The select attribute is an XPath expression that specifies the node

to insert the objects.

At this time, it is only possible to specify node by the absolute path

to the node (for example, “/m:myWidgets/m:widget”) or by the
attribute’s id element (for example,

“/m:myWidgets/m:widget[@id=’2’]”).

ms:insertResponse

An insert response message is returned on completion of the ms:insertRequest method.

The following document fragment illustrates this message.

<ms:insertResponse selectedNodeCount=”…” status=”…”

 xmlns:ms=”http://schemas.microsoft.com/ms/2001/1/core”>

 <ms:newBlue id=”…” changeNumber=”…”> </ms:newBlue>

</ms:insertResponse>

The meaning of the attributes and elements shown in the preceding sample document

fragment are listed in the following table.

Attribute Description

selectedNodeCount

The selectedNodeCount attribute contains the number of

selected nodes. It is an unsigned variable length integer.

status The status attribute indicates the status of the method. See

“Return Values” below.
id The id attribute contains the ID assigned to the xdb:blue object.

It is an unsigned variable length integer. It is generated by the

MSN Mobile service and is unique within the document.

changeNumber The changeNumber attribute contains the change number for

the new or modified sdb:blue object. It is an unsigned variable

length integer. For more information about change numbers,

see “Change Numbers” on page 38.

Examples

This is a sample document before the method is invoked.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 26

<m:myWidgets changeNumber="1">

</m:myWidgets>

This is a sample request message.

<ms:insertRequest select="/">

 <m:widget>

 <m:name xml:lang="en">My first widget</m:name>

 <m:unitPrice currency="USD">65.00</m:unitPrice>

 </m:widget>

 <m:widget>

 <m:name xml:lang="en">My second widget</m:name>

 <m:unitPrice currency="USD">25.00</m:unitPrice>

 </m:widget>

</ms:insertRequest>

This is a sample response.

<ms:insertResponse selectedNodeCount="2" status="success">

 <ms:newBlue id="1" changeNumber="2"/>

 <ms:newBlue id="2" changeNumber="2"/>

</ms:insertRequest>

This is a sample document after the method is invoked.

<m:myWidgets changeNumber="2">

 <m:widget id="1" changeNumber="2">

 <m:name xml:lang="en">My first widget</m:name>

 <m:unitPrice currency="USD">65.00</m:unitPrice>

 </m:widget>

 <m:widget id="2" changeNumber="2">

 <m:name xml:lang="en">My second widget</m:name>

 <m:unitPrice currency="USD">25.00</m:unitPrice>

 </m:widget>

</m:myWidgets>

Return Values

These are the values that may be returned by the service for this method.

Value Response

status=success Indicates success. Note that empty selections result in

successful responses.

selectedNodeCount=0,

status=failure

Indicates a missing primary (blue) element. This only occurs if

the client tries to delete an object that doesn’t exist any
more. In the case of delete, the error can be safetly ignored.

For changes, the developer may want to provide some sort of

error handling code (for example, the user could be notified

that the object no longer exists and asked if the user wants

to add it).

selectedNodeCount=1,

status=failure

Indicates an internal error condition. The operation cannot

be performed. In this case, the developer may want to

display an error message on the client such as “service
temporarily unavailable”.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 27

selectedNodeCount=0 or

empty set,

status=synchronize

Indicates that the change number is out of an acceptable

range. In this case, the service cannot complete the method

until the client application synchronizes to the service. The

client must use an xpQuery to synchronize to the service.

selectedNodeCount=1,

status=duplicateBlue

Indicates that the operation cannot be performed because of

a duplicate primary (blue) element. The developer may want

to provide some sort of duplicate resolution code (for

example, the user could be shown both objects and asked

which one they want to save). Note that a SQL-based data

store with a unique index may generate a duplicateBlue

status.

Querying for Nodes
The query request method allows for basic data retrieval functionality. An XPath statement

resides in a select attribute telling the MSN Mobile service which XML nodes within the

service document you want to query.

ms:queryRequest

The query request method retrieves the properties of objects from a document. Multiple

queries can be made in a single ms:queryRequest request, if desired.

This is a sample request message.

<ms:queryRequest

 xmlns:ms=”http://schemas.microsoft.com/ms/2001/1/core”>

 <ms:xpQuery select=”…”> </ms:xpQuery>

 <ms:changeQuery select=”…” baseChangeNumber=”…”> </ms:changeQuery>

</ms:queryRequest>

The meaning of the attributes and elements shown in the preceding sample document

fragment are listed in the following table.

Attribute Description

select

The select attribute is an XPath expression that specifies the

node to query the objects.

At this time, it is only possible to specify node by the absolute

path to the node (for example, “/m:myWidgets/m:widget”) or
by the attribute’s id element (for example,

“/m:myWidgets/m:widget[@id=’2’]”).
baseChangeNumber The baseChangeNumber attribute is the value of the current

changeNumber that the server has for the selected node. It is

an unsigned variable length integer. For more information

about change numbers, see “Change Numbers” on page 38.

ms:queryResponse

A query response message is returned on completion of the ms:queryRequest method.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 28

<ms:queryResponse

 xmlns:ms=”http://schemas.microsoft.com/ms/2001/1/core”>

 <ms:xpQueryResponse status=”…”>

 {objects}

 </ms:xpQueryResponse>

 <ms:changeQueryResponse baseChangeNumber=”…” status=”…”>

 {objects}

 <ms:deletedBlue id=”…”> </ms:deletedBlue>

 </ms:changeQueryResponse>

</ms:queryResponse>

The meaning of the attributes and elements shown in the preceding sample document

fragment are listed in the following table.

Attribute Description

status

The status attribute indicates the status of the method. See

“Return Values” below.
baseChangeNumber The baseChangeNumber attribute is the value of the current

changeNumber that the server has for the selected node. It is

an unsigned variable length integer. For more information

about change numbers, see “Change Numbers” on page 38.

id The id attribute contains the ID assigned to the xdb:blue object.

It is an unsigned variable length integer. It is generated by the

MSN Mobile service and is unique within the document.

Examples
This is a sample request message.

<ms:queryRequest>

 <ms:xpQuery select="/"/>

</ms:queryRequest>

This is a sample response.

<ms:queryResponse>

 <ms:xpQueryResponse status=”success”>

 <m:myWidgets changeNumber="2">

 <m:widget id="1" changeNumber="2">

 <m:name xml:lang="en">My first widget</m:name>

 <m:unitPrice currency="USD">65.00</m:unitPrice>

 </m:widget>

 <m:widget id="2" changeNumber="2">

 <m:name xml:lang="en">My second widget</m:name>

 <m:unitPrice currency="USD">25.00</m:unitPrice>

 </m:widget>

 </m:myWidgets>

 <\ms:xpQueryResponse>

<\ms:queryResponse>

Note that a query can use XPath predicates to specify attributes or elements. This is a

sample request message that uses XPath notation.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 29

<ms:queryRequest>

 <ms:xpQuery select="/m:myWidgets/m:widget[@id=’1’]"/>

</ms:queryRequest>

This is a sample response that uses XPath notation.

<ms:queryResponse>

 <ms:xpQueryResponse status=”success”>

 <m:myWidgets changeNumber="2">

 <m:widget id="1" changeNumber="2">

 <m:name xml:lang="en">My first widget</m:name>

 <m:unitPrice currency="USD">65.00</m:unitPrice>

 </m:widget>

 </m:myWidgets>

 <\ms:xpQueryResponse>

<\ms:queryResponse>

This is a sample request message.

<ms:queryRequest>

 <ms:xpQuery select="="/m:myWidgets /m:widget[@id=’3’]"/>

</ms:queryRequest>

This is a sample response.

<ms:queryResponse>

 <ms:xpQueryResponse status=”success”/>

<\ms:queryResponse>

Return Values

These are the values that may be returned by the service for this method.

Value Response

status=success Indicates success. Note that empty selections result in

successful responses.

selectedNodeCount=0,

status=failure

Indicates a missing primary (blue) element. This will only

occur if the client tries to delete an object that doesn’t exist
any more. In the case of delete, the error can be safetly

ignored. For changes, the developer may want to provide

some sort of error handling code (for example, the user could

be notified that the object no longer exists and asked if the

user wants to add it).

selectedNodeCount=1,

status=failure

Indicates an internal error condition. The operation cannot

be performed. In this case, the developer may want to

display an error message on the client such as “service
temporarily unavailable”.

Deleting Nodes
The delete request method is a simple element with a select attribute indicating with XPath

the targeted element to delete from the service document.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 30

ms:deleteRequest

The ms:deleteRequest method deletes the selected note and all child nodes of a

document.

<ms:deleteRequest select=”…”

 xmlns:ms=”http://schemas.microsoft.com/ms/2001/1/core”>

</ms:deleteRequest>

The meaning of the attributes and elements shown in the preceding sample document

fragment are listed in the following table.

Attribute Description

select The select attribute is an XPath expression that specifies the

node to delete the objects.

At this time, it is only possible to specify node by the absolute

path to the node (for example, “/m:myWidgets/m:widget”) or
by the attribute’s id element (for example,

“/m:myWidgets/m:widget[@id=’2’]”).

ms:deleteResponse

A delete response message is returned on completion of the ms:deleteRequest method.

<ms:deleteResponse selectedNodeCount=”…” status=”…”

xmlns:ms=”http://schemas.microsoft.com/ms/2001/1/code”>

<ms:changedBlue id=”…” changeNumber=”…”> </ms:changedBlue>

<ms:deletedBlue id=”…” changeNumber=”…”> </ms:deletedBlue>

</ms:deleteResponse>

The meaning of the attributes and elements shown in the preceding sample document

fragment are listed in the following table.

Attribute Description

selectedNodeCount The selectedNodeCount attribute contains the number of

selected nodes. It is an unsigned variable length integer.

status The status attribute indicates the status of the method. See

“Return Values” below.
id The id attribute contains the ID assigned to the xdb:blue object.

It is an unsigned variable length integer. It is generated by the

MSN Mobile service and is unique within the document.

changeNumber The changeNumber attribute contains the change number for

the new or modified sdb:blue object. It is an unsigned variable

length integer. For more information about change numbers,

see “Change Numbers” on page 38.

Examples

This is a sample request message.

<ms:deleteRequest select="/myWidgets/m:widget[m:unitPrice =

'65.00']"/>

This is a sample response.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 31

<ms:deleteResponse selectedNodeCount="1" status="success">

 <hs:deletedBlue id="1" changeNumber="3"/>

</ms:deleteResponse>

This is a sample document after the method is invoked.

<m:myWidgets changeNumber="3">

 <m:widget id="2" changeNumber="2">

 <m:name xml:lang="en">My second widget</m:name>

 <m:unitPrice currency="USD">25.00</m:unitPrice>

 </m:widget>

</m:myWidgets>

Return Values

These are the values that may be returned by the service for this method.

Value Response

status=success Indicates success. Note that empty selections result in

successful responses.

selectedNodeCount=0,

status=failure

Indicates a missing primary (blue) element. This will only

occur if the client tries to delete an object that doesn’t exist
any more. In the case of delete, the error can be safetly

ignored. For changes, the developer may want to provide

some sort of error handling code (for example, the user could

be notified that the object no longer exists and asked if the

user wants to add it).

selectedNodeCount=1,

status=failure

Indicates an internal error condition. The operation cannot

be performed. In this case, the developer may want to

display an error message on the client such as “service
temporarily unavailable”.

selectedNodeCount=0 or

empty set,

status=synchronize

Indicates that the change number is out of an acceptable

range. In this case, the service cannot complete the method

until the client application synchronizes to the service. The

client must use an xpQuery to synchronize to the service.

Replacing Elements
The replace message method allows the client to target a specific primary (blue) element

within the service document and replace its contents with the contents supplied in the

current replace request. The targeted element is replaced in its entirety.

ms:replaceRequest
The ms:replaceRequest method replaces the object at the selected node in the document

with a new object.

<ms:replaceRequest select=”…”

 xmlns:ms=”http://schemas.microsoft.com/ms/2001/1/core”>

 {objects}

</ms:replaceRequest>

The meaning of the attributes and elements shown in the preceding sample document
fragment are listed in the following table.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 32

Attribute Description

select

The select attribute is an XPath expression that specifies the

node to insert the objects.

At this time, it is only possible to specify node by the absolute

path to the node (for example, “/m:myWidgets/m:widget”) or
by the attribute’s id element (for example,

“/m:myWidgets/m:widget[@id=’2’]”).

ms:replaceResponse
A ms:replaceResponse message is returned on completion of a replace request method.

<ms:replaceResponse selectedNodeCount=”…” status=”…”

 xmlns:ms=”http://schemas.microsoft.com/ms/2001/1/core”>

 <ms:newBlue id=”…” changeNumber=”…”> </ms:newBlue>

 <ms:changedBlue id=”…” changeNumber=”…”> </ms:changedBlue>

 <ms:deletedBlue id=”…” changeNumber=”…”> </ms:deletedBlue>

</ms:replaceResponse>

The meaning of the attributes and elements shown in the preceding sample document

fragment are listed in the following table.

Attribute Description

selectedNodeCount

The selectedNodeCount attribute contains the number of

selected nodes. It is an unsigned variable length integer.

status The status attribute indicates the status of the method. See

“Return Values” below.
id The id attribute contains the ID assigned to the xdb:blue object.

It is an unsigned variable length integer. It is generated by the

MSN Mobile service and is unique within the document.

changeNumber The changeNumber attribute contains the change number for

the new or modified sdb:blue object. It is an unsigned variable

length integer. For more information about change numbers,

see “Change Numbers” on page 38.

Examples

This is a sample request message.

<ms:replaceRequest select="/m:myWidgets/m:widget[@id='2']">

 <m:widget>

 <m:name xml:lang="en">My new second object</m:name>

 <m:unitPrice currency="GBP">8.99</m:unitPrice>

 </m:widget>

</ms:replaceRequest>

This is a sample response.

<ms:replaceResponse selectedNodeCount="1" status="success">

 <ms:changedBlue id="2" changeNumber="4"/>

</ms:replaceResponse>

This is a sample document after the method is invoked.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 33

<m:myWidgets changeNumber="4">

 <m:widget id="2" changeNumber="4">

 <m:name xml:lang="en">My new second object</m:name>

 <m:unitPrice currency="GBP">8.99</m:unitPrice>

 </m:widget>

</m:myWidgets>

Return Values

These are the values that may be returned by the service for this method.

Value Response

status=success Indicates success. Note that empty selections result in

successful responses.

selectedNodeCount=0,

status=failure

Indicates a missing primary (blue) element. This will only

occur if the client tries to delete an object that doesn’t exist
any more. In the case of delete, the error can be safetly

ignored. For changes, the developer may want to provide

some sort of error handling code (for example, the user could

be notified that the object no longer exists and asked if the

user wants to add it).

selectedNodeCount=1,

status=failure

Indicates an internal error condition. The operation cannot

be performed. In this case, the developer may want to

display an error message on the client such as “service
temporarily unavailable”.

selectedNodeCount=0 or

empty set,

status=synchronize

Indicates that the change number is out of an acceptable

range. In this case, the service cannot complete the method

until the client application synchronizes to the service. The

client must use an xpQuery to synchronize to the service.

Updating Elements

ms:updateRequest

The update request method groups multiple insert, delete, and replace operations into a

single message.

<ms:updateRequest

 xlmns:ms=”http://schemas.microsoft.com/ms/2001/1/core”>

 <ms:updateBlock select=”…”>

 <ms:insertRequest select=”…”>

 {objects}

 </ms:insertRequest>

 <ms:deleteRequest select=”…”>

 </ms:deleteRequest>

 <ms:replaceRequest select=”…”>

 {objects}

 </ms:replaceRequest>

 </ms:updateBlock>

</ms:updateRequest>

The meaning of the attributes and elements shown in the preceding sample document

fragment are listed in the following table.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 34

Attribute Description

select The select attribute in the update block sets the global context

of the update block in the document.

ms:updateResponse

The update response message is returned on completion of an ms:updateRequest

method.

<ms:updateResponse

xmlns:ms=”http://schemas.microsoft.com/ms/2001/1/core”>

<ms:updateBlockStatus>

<ms:insertResponse selectedNodeCount=”…” status=”…”>

<ms:newBlue id=”…” changeNumber=”…”> </ms:newBlue>

</ms:insertResponse>

<ms:deleteResponse selectedNodeCount=”…” status=”…”>

<ms:changedBlue id=”…” changeNumber=”…”> </ms:changedBlue>

<ms:deletedBlue id=”…” changeNumber=”…”> </ms:deletedBlue>

</ms:deleteResponse>

<ms:replaceResponse selectedNodeCount=”…” status=”…”>

<ms:newBlue id=”…” changeNumber=”…”> </ms:newBlue>

<ms:changedBlue id=”…” changeNumber=”…”> </ms:changedBlue>

<ms:deletedBlue id=”…” changeNumber=”…”> </ms:deletedBlue>

</ms:replaceResponse>

 </ms:updateBlockStatus>

</ms:updateResponse>

The meaning of the attributes and elements shown in the preceding sample document

fragment are listed in the following table.

Attribute Description

selectedNodeCount The selectedNodeCount attribute contains the number of

selected nodes. It is an unsigned variable length integer.

status The status attribute indicates the status of the method.

See “Return Values” below.
id The id attribute contains the ID assigned to the xdb:blue

object. It is an unsigned variable length integer. It is

generated by the MSN Mobile service and is unique within

the document.

changeNumber The changeNumber attribute contains the change number

for the new or modified sdb:blue object. It is an unsigned

variable length integer. For more information about

change numbers, see “Change Numbers” on page 38.

Examples

This is a sample request message.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 35

<ms:updateRequest>

 <ms:updateBlock select=”/myWidgets”>

 <ms:insertRequest select=".">

 <m:widget>

 <m:name xml:lang="en">My third widget</m:name>

 <m:unitPrice currency="USD">15.00</m:unitPrice>

 </m:widget>

 </ms:insertRequest>

 <ms:replaceRequest select="./widget[@id='2']">

 <m:widget>

 <m:name xml:lang="en">My new new second object</m:name>

 <m:unitPrice currency="GBP">9.99</m:unitPrice>

 </m:widget>

 </ms:replaceRequest>

 </ms:updateBlock>

</ms:updateRequest>

This is a sample response.

<ms:updateResponse>

 <ms:updateBlockStatus>

 <ms:insertResponse selectedNodeCount="1" status="success">

 <ms:newBlue id="3" changeNumber="5"/>

 </ms:insertRequest>

 <ms:replaceResponse selectedNodeCount="1" status="success">

 <ms:changedBlue id="2" changeNumber="5"/>

 </ms:replaceResponse>

 </ms:updateBlockStatus>

</ms:updateResponse>

This is a sample document after the method is invoked.

<m:myWidgets changeNumber="5">

 <m:widget id="2" changeNumber="5">

 <m:name xml:lang="en">My new new second object</m:name>

 <m:unitPrice currency="GBP">9.99</m:unitPrice>

 </m:widget>

 <m:widget id="3" changeNumber="5">

 <m:name xml:lang="en">My third widget</m:name>

 <m:unitPrice currency="USD">15.00</m:unitPrice>

 </m:widget>

</m:myWidgets>

Ping
Ping is used diagnostically to ensure that a host computer you are trying to reach is actually

operating. It is possible for clients to ping the MSN Mobile service to check whether or not

it is actually running. More commonly, pings are used by the MSN Mobile service to notify

a client that they should reconnect to the service to retrieve a high priority item such as an

e-mail or rich news report. The ping typically contains the first characters of the item and

provides a link to allow the user to reconnect to the service to retrieve the entire item. If a

client is available to receive the ping, then the user can choose whether or not to reconnect

to the service. If a client is not available to receive the ping (say, because the user is
operating a mobile phone and drives through a tunnel), then the ping drops.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 36

ms:pingRequest

The ping request method pings the client or the service. The method may contain

information on the queued MSP messages.

MSP is transport independent. MSP sessions may exist over multiple transports and

connections (for example, SMS and mobile IP connections). Currently mobile data

infrastructure supports MO IP connections only. A MSP-based application may use the

ms:pingRequest method over a MT connection (for example, by sending an SMS message

that notifies the client that they have a message waiting and providing a link for re-

establishing the IP connection).

<ms:pingRequest

 xmlns:ms=”http://schemas.microsoft.com/ms/2001/1/core”>

 <ms:messagePreview id=”…” objectID=”…”>0..N

 <ms:request service=”…” method=”...”>0..1</ms:request>

 <ms:response service=”…”>0..1</ms:response>

 <ms:emailAddress>0..1</ms:emailAddress>

 <ms:plainBody>0..1</ms:plainBody>

 </ms:messagePreview>

 {any}

</ms:pingRequest>

The meaning of the attributes and elements shown in the preceding sample document

fragment are listed in the following table.

Attribute Description

id The id attribute contains the id of the queued MSP message. It

is an unsigned variable length integer.

objectID The objectID atrribute contains the ID of an object affected by

the queued MSP message.

Note: The messaging service passes the callID in the

objectID. The myInbox service passes the ID of the

e-mail.

ms:request The request element contains the request element of the

queued MSP message.

ms:response The response element contains the response element of the

queued MSP message.

ms:emailAddress The emailAddress element contains either the screen name of

email address of the originator of the queued MSP message. It

is truncated to 15 characters.

Note: Not all MSP messages have an originator. This

element typically contains the sender of an instant

message or e-mail.

ms:plainBody The plainBody element contains a description of the queued

MSP message (for example, “news alert”, “stock quote” or the
subject of an e-mail message). It is truncated to 20 characters.

Example

A sample ping for a queued e-mail alert.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 37

<s:Envelope>

<s:Header>

<srp:path>

<srp:to>”somebody@msn.com”</srp:to>

<srp:from>”http://myservices.mobile.msn.com”</srp:from>

<srp:id>245</srp:id>

</srp:path>

<ms:request service=”mobileMyServices” method=”ping”

genResponse=”always”/>

</s:Header>

<s:Body>

<ms:pingRequest>

<ms:message id=”244”>

<ms:request service=”myInbox” method=”notification”/>

<ms:emailAddress>Darren Apfel</ms:emailAddress>

<ms:plainBody>Re: Offline alerts</ms:plainBody>

</ms:message>

</ms:pingRequest>

 </s:Body>

</s:Envelope>

ms:pingResponse

The ms:pingResponse message is returned on receipt of a ping request.

<ms:pingResponse

xmlns:ms=”http://schemas.microsoft.com/ms/2001/1/core”>

 {any}

</ms:pingResponse>

Interpreting Fault Responses
SOAP returns fault responses for errors in executing Authenticate and Request primitives.

This is a sample response.

<s:Fault>

<s:faultcode>1..1</s:faultcode>

<s:faultstring>0..1</s:faultstring>

{any}

</s:Fault>

The meaning of the attributes and elements shown in the preceding sample document fragment

are listed in the following table.

Attribute Description

s:faultcode The faultcode element must be present in a SOAP fault response.

Valid values are:

• VersionMismatch – The version number of the protocol is not

supported.

• ClientMismatch – The message was incorrectly formed or did

not contain the required information (for example, there was

no body tag).

• Server – The message was correctly formed, but the MSN

Mobile service did not respond.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 38

• LicenseExpired – The MSP session has expired. It is necessary

for the client to re-authenticate.

s:faultstring The faultstring attribute contains an explanation of the fault. The fault

description is intended to be readable, not processed algorithmically.

It is optional.

Synchronizing Data
Clients are responsible for handling synchronization of data with the MSN Mobile service.

They use change numbers to keep track of changes in the user's data since the user's last use of

the device, and then retrieve only the data that has changed. Clients must also have the capacity

to receive large messages in partial amounts, called chunks. By receiving chunks of messages

and displaying their content to a user, the end-user experience is improved because the user

does not have to wait for large messages to download in their entirety before beginning to

access their content.

Change Numbers
A client's MSN Mobile data may change as a result of many possible factors. For example,

the client may have changed contacts information or e-mail settings on either the PC-based

or mobile versions of Hotmail or Messenger, or a user's contact may have updated its

properties. Each change information results in an update to a change number (that is, the

changeNumer attribute of the xdb:blue object). Note that for MSN Messenger, changes in

presence do not result in a change number update.

The changeNumber attribute is incremented whenever the xdb:blue object is changed. The

changeNumber is propagated up to all xdb:blue ancestor nodes. A client that caches mobile

service data uses the changeNumber attribute in conjunction with a change query to

synchronize the cache. The service returns a response with status="synchronize" if it cannot

synchronize the cache. In that case, the client should send an xpQuery to restore the cache.

Note: Setting the includeObjectChangeNumbers device capability to “no”
suppresses object change numbers.

Usage Scenario

Joe User uses MSN Messenger on both his PC and his phone. He logs into Messenger

on his phone and has an instant messaging session with a buddy. The MSN Mobile

service tracks the changeNumber as 10. A while later, Joe's account receives

notification that one of Joe's buddies, somebody@hotmail.com has changed its friendly

name to “Some Body”. This silently increments the change number from 10 to 11. Joe's
phone is set to receive real time property updates, so it receives a push notification that

the friendly name for one of his contacts has changed. The push notification includes

the change number 11. Joe's client processes the change number and decides not to re-

synchronize with the service at this time, but to silently drop the change until Joe logs

on again. The next time Joe logs on to Messenger using his mobile phone, the client

retrieves just the changes that have taken place since he last logged on to the phone.

Examples

This is an example of a message before a request occurs.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 39

<m:myWidgets changeNumber="11">

 <m:widget id="4" changeNumber="8">

 <m:name xml:lang="en">Widget 4</m:name>

 <m:unitPrice currency="USD">8.99</m:unitPrice>

 </m:widget>

 <m:widget id="5" changeNumber="10">

 <m:name xml:lang="en">Widget 5</m:name>

 <m:unitPrice currency="USD">128.00</m:unitPrice>

 </m:widget>

</m:myWidgets>

This is a sample request message.

<ms:queryRequest>

 <ms:changeQuery select="/" baseChangeNumber="8"/>

</ms:queryRequest>

This is a sample response.

<ms:queryResponse>

 <ms:changeQueryResponse baseChangeNumber="11"

 status="success">

 <ms:deletedBlue id="9" changeNumber="9"/>

 <m:widget id="5" changeNumber="10">

 <m:name xml:lang="en">Widget 5</m:name>

 <m:unitPrice currency="USD">128.00</m:unitPrice>

 </m:widget>

 <ms:deletedBlue id="10" changeNumber="11"/>

 </ms:changeQueryResponse>

</ms:queryResponse>

Segmentation
Some service responses may be too large for the mobile device to process in a single

message. Examples are large xpQuery and changeQuery responses. When this occurs, the

service may segment large responses based on the maxPDUSize device capability. The

sections are atomic MSP messages. The breaks in the message are determined by the object

boundaries.

Clients can keep track of a message that has been broken into sections by tracking the

unique ID and relatesTo ID numbers. Each of the MSP message sections has a unique ID.

Additionally, the MSP messages have the same relatesTo ID. And objects will have unique

change numbers. It should be possible for the client application to reassemble segmented

messages using the ID numbers regardless of the order in which they were received from

the service. In the event that one or more of the message sections are missing, then the

client application should identify the missing sections by using the previousChangeNumber

element in the response header. In this way, the client should recover from a missing

message by issuing a new changeQuery to the service which contains a baseChangeNumber

for the last message received in sequence.

Note: Multiple MSP messages may be sent in a single PDU. The PDU must

still be within the maxPDUSize for the device. This is a sample request

message.

Examples

This is a sample original response.

MSN Mobile My Services 6.0 Software Porting Kit DRAFT – MICROSOFT CONFIDENTIAL page 40

<s:Envelope>

<s:Header>

<srp:path>

<srp:from>”http://mywidgets.mobile.msn.com”</srp:from>

<srp:id>23</srp:id>

<srp:relatesTo>202</srp:relatesTo>

</srp:path>

<ss:license>12</ms:license>

<ms:response service=”myWidgets” previousChangeNumber=”8”

 changeNumber=”11”/>

</s:Header>

<s:Body>

<ms:queryResponse>

<ms:changeQueryResponse baseChangeNumber="11"

 status="success">

<ms:deletedBlue id="9" changeNumber="9"/>

<m:widget id="5" changeNumber="10">

<m:name xml:lang="en">Widget 5</m:name>

<m:unitPrice currency="USD">128.00</m:unitPrice>

</m:widget>

<ms:deletedBlue id="10" changeNumber="11"/>

</ms:changeQueryResponse>

</ms:queryResponse>

 </s:Body>

</s:Envelope>

This is a sample segmented response.

